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Abstract. We calculate the electromagnetic form factors of the nucleon up to fourth order in manifestly
Lorentz-invariant chiral perturbation theory with vector mesons as explicit degrees of freedom. A systematic
power counting for the renormalized diagrams is implemented using both the extended on-mass-shell
renormalization scheme and the reformulated version of infrared regularization. We analyze the electric
and magnetic Sachs form factors, GE and GM , and compare our results with the existing data. The
inclusion of vector mesons results in a considerably improved description of the form factors. We observe
that the most dominant contributions come from tree-level diagrams, while loop corrections with internal
vector meson lines are small.

PACS. 12.39.Fe Chiral Lagrangians – 13.40.Gp Electromagnetic form factors

1 Introduction

Experiments on elastic electron-nucleon scattering provide
the most fundamental information on the electromagnetic
structure of the nucleon [1]. In the one-photon-exchange
approximation, this information is contained in four elec-
tromagnetic form factors, two each for the proton and the
neutron, which parameterize the single-nucleon matrix el-
ement of the electromagnetic current operator Jµ(x):

〈N(p′)|Jµ(0)|N(p)〉 = ū(p′)

[

γµFN
1 +

iσµνqν
2mp

FN
2

]

u(p),

where q = p′ − p and N = p, n. The so-called Dirac and
Pauli form factors FN

1 (Q2) and FN
2 (Q2) are functions of

Q2 = −q2 ≥ 0 and are normalized such that, at Q2 =
0, they reduce to the electric charge and the anomalous
magnetic moment in units of the elementary charge and
the nuclear magneton e/(2mp), respectively:

F p
1 (0) = 1, Fn

1 (0) = 0, F p
2 (0) = 1.793, Fn

2 (0) = −1.913.

For the analysis of experimental data it is more conve-
nient to use the electric and magnetic Sachs form factors
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GN
E (Q2) and GN

M (Q2) [2] which are related to the Dirac
and Pauli form factors via

GN
E (Q2) = FN

1 (Q2)−
Q2

4m2
N

FN
2 (Q2),

GN
M (Q2) = FN

1 (Q2) + FN
2 (Q2).

Their Fourier transforms in the Breit frame can be related
to the distribution of charge and magnetization inside the
nucleon. These form factors have been the aim of exten-
sive research and, for the case of the proton, are known
over a wide momentum range. An apparent inconsistency
of the results for the ratio of the electric and magnetic
proton form factors as obtained from the Rosenbluth sep-
aration in comparison with those from the polarization
transfer method has recently been addressed in terms of
two-photon exchange corrections [3]. Due to the lack of a
free neutron target, the neutron form factors are not as
well known. However, recent experiments using polarized
beams and/or targets have improved our knowledge, es-
pecially of Gn

E (for an overview and a recent discussion
of the existing form factor data, see refs. [4–6] and refer-
ences therein). Given the wealth and precision of available
data, the description of the electromagnetic form factors
presents a stringent test for any theory or model of the
strong interaction.
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Chiral perturbation theory (ChPT) [7–9] is the effec-
tive field theory of quantum chromodynamics in the low-
energy region (for a recent review, see ref. [10]). Using
ChPT, the form factors have been calculated within the
early relativistic approach [9], heavy-baryon ChPT [11,
12], and the small-scale expansion [13]. The spectral func-
tions of the isovector electromagnetic form factors of
the nucleon have been analyzed at the one- and two-
loop order in refs. [14] and [15], respectively. More re-
cently, also two manifestly Lorentz-invariant renormal-
ization schemes, namely infrared regularization (IR) of
ref. [16] and the extended on-mass-shell (EOMS) scheme
of ref. [17], have been used to calculate the form factors
up to and including order O(q4) [18,19]. The results in
the two renormalization schemes are very similar, but fail
to describe both proton form factors Gp

E and Gp
M as well

as the magnetic neutron form factor Gn
M for momentum

transfers beyond Q2 ∼ 0.1GeV2. To improve these re-
sults higher-order contributions have to be included. This
can be achieved by performing a full calculation at O(q5)
which would also include the analysis of two-loop dia-
grams. That such a calculation in a manifestly Lorentz-
invariant framework is, at least in principle, possible has
been demonstrated in ref. [20].

Another possibility is to include additional degrees of
freedom, through which some of the higher-order contribu-
tions are re-summed. This latter approach is less system-
atic and proceeds more along the lines of phenomenologi-
cal models. It has long been established that vector mesons
play an important role in the description of the nucleon
form factors, and by including them dynamically in the ef-
fective field theory one hopes to generate the most impor-
tant higher-order contributions. In ref. [18] the ρ, ω, and
φ mesons have been included in the calculation. One finds
that the vector mesons re-sum important higher-order
contributions and the obtained description of form factors
up to Q2 ≈ 0.4GeV2 is satisfactory. Since diagrams with
internal vector meson lines inside loops cannot be treated
within the original formulation of infrared regularization,
such diagrams have not been considered in ref. [18].

The EOMS renormalization scheme of ref. [17] and the
reformulated version of infrared regularization of ref. [21]
both allow to include virtual vector mesons systematically

in the region of the applicability of baryon chiral perturba-
tion theory [22]. The standard power counting determines
which diagrams (including diagrams with vector mesons
appearing in loops) should be taken into account to a given
order in the chiral expansion. In this Letter we present
the nucleon electromagnetic form factors to order O

(

q4
)

in the framework of baryon ChPT with explicit vector
mesons. Our calculations contain all diagrams which ap-
pear to this order in the chiral expansion.

2 Effective Lagrangian and power counting

The Lagrangian needed for calculating the electromag-
netic form factors up to order q4 without explicit vector
mesons can be found in ref. [19]. Here, q collectively stands

for a small quantity such as the pion mass, small exter-
nal four-momenta of the pion and small external three-
momenta of the nucleon. In this Letter, we consider, in
addition, the ρ, ω, and φ mesons as explicit degrees of
freedom. We make use of the vector-field representation of
ref. [23], in which the ρ meson is represented by ρµ = ρaµτ

a

and the ω and φ mesons by ωµ and φµ, respectively. The
coupling of the vector mesons to pions and external fields
is at least of the order q3,

L
(3)
πV = −fρTr(ρ

µνf+
µν)−fωω

µνf (s)
µν −fφφ

µνf (s)
µν +. . . , (1)

where

f (s)
µν = ∂µv

(s)
ν − ∂νv

(s)
µ ,

f+
µν = ufLµνu

+ + u+fRµνu,

with

fLµν = ∂µlν − ∂ν lµ − i [lµ, lν ] ,

fRµν = ∂µrν − ∂νrµ − i [rµ, rν ] .

The SU(2) matrix u2 = U contains the pion fields. For the
case of a coupling to an external electromagnetic potential
Aµ the external fields are given by rµ = lµ = −eτ3Aµ/2

and v
(s)
µ = −eAµ/2 (e2/4π ≈ 1/137, e > 0) [10]. Further-

more

Vµν = ∇µVν −∇νVµ, V = ρ, ω, φ

with

∇µVν = ∂µVν + [Γµ, Vν ]

and

Γµ =
1

2

[

u†, ∂µu
]

−
i

2
u†rµu−

i

2
ulµu

†.

Only those terms that are used for the calculation of the
form factors up to order q4 are given here; a complete list
of possible interaction terms at order q3 can be found in
ref. [23].

The lowest-order Lagrangian for the coupling to the
nucleon is given by

L
(0)
NV =

1

2

∑

V=ρ,ω,φ

gV Ψ̄γ
µVµΨ, (2)

and the O(q) Lagrangian reads

L
(1)
NV =

1

4

∑

V=ρ,ω,φ

GV Ψ̄σ
µνVµνΨ. (3)

Finally, each renormalized diagram has a chiral order
D which is determined with the following power count-
ing rules in addition to the ones in ref. [19]: vertices from

L
(3)
πV count as O(q3) and vertices from L

(i)
NV as O(qi), re-

spectively, while the vector-meson propagators count as
O(q0).
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Table 1. Values of the vector-meson coupling constants within an O(q4) calculation.

fρ fω fφ gρ gω gφ Gρ Gω Gφ

(GeV−1) (GeV−1) (GeV−1)

0.10 0.03 0.05 4.0 42.8 −20.6 13.0 0.96 −3.3

Table 2. Values of the relevant low-energy constants in the EOMS and the infrared regularization scheme. The LECs ci are
given in units of GeV−1, the di in units of GeV−2, and the ei in units of GeV−3.

c2 c4 c̃6 c̃7 d6 d7 e54 e74

EOMS 2.66 2.45 1.26 −0.13 1.21 1.30 −0.76 1.65

IR 2.66 2.45 0.47 −1.87 0.98 0.24 −0.26 −0.90

Fig. 1. Feynman diagrams including vector mesons that con-
tribute to the electromagnetic form factors of the nucleon up
to and including O(q4). External leg corrections are not shown.
Solid, wiggly, and double lines refer to nucleons, photons, and
vector mesons, respectively. The numbers in the interaction
blobs denote the order of the Lagrangian from which they are
obtained. The direct coupling of the photon to the nucleon is

obtained from L
(1)
πN and L

(2)
πN .

3 Results and discussion

The relevant diagrams that do not contain vector mesons
and their explicit contributions to the form factors are
given in ref. [19]. The additional diagrams involving vec-
tor mesons that contribute in the calculation of the form
factors up to and including order O(q4) using the La-
grangians of eqs. (1)-(3) are shown in fig. 1. To renor-
malize the results we employed both the infrared regu-
larization [16] in its reformulated version [21] as well as
the EOMS scheme of ref. [17]. Since the results for the
vector-meson diagrams contain only loop integrals with
no internal pion lines, these loop contributions vanish in

the infrared regularization and only the tree graphs (I)
and (II) of fig. 1 contribute. On the other hand, in the
EOMS scheme the renormalized diagram (III) contributes
at O(q3) and the renormalized diagrams (IV) and (V) at
O(q4), respectively. Finally, at the given order the vector-
meson diagrams do not contribute to the wave function
renormalization constant Z.

In order to obtain the form factors numerically we have
to fix the parameters of the Lagrangian. The parameters
of the vector-meson Lagrangian of eq. (1) for the coupling
to external fields have been taken from ref. [23], and those
of eqs. (2) and (3) for the coupling of vector mesons to the
nucleon from the dispersion relations of refs. [24,25]. The
numerical values of these coupling constants are given in
table 1.

To determine the low-energy constants (LECs) c2,
c4, c̃6, c̃7, d6, d7, e54, and e74 of the πN effective La-
grangian [26] we proceed analogously to ref. [19]. We use
the more recent values of ref. [25] for the proton electric
and magnetic radii, rpE = 0.848 fm and rpM = 0.857 fm, and
the neutron magnetic radius, rnM = 0.879 fm. Table 2 sum-
marizes the values of the LECs in the EOMS and infrared
regularization schemes. The differences between the LECs
in the respective renormalization schemes originate in the
different treatment of loop integrals. In comparison to a
calculation without vector mesons only the parameters di
and ei change.

The results for the Sachs form factors in the momen-
tum transfer region 0GeV2 ≤ Q2 ≤ 0.4GeV2 are shown in
fig. 2. For comparison, fig. 3 contains the corresponding re-
sults at O(q4) without vector mesons. As expected on phe-
nomenological grounds, the quantitative description of the
data has improved considerably for Q2 & 0.1 GeV2. The
small difference between the two renormalization schemes
is due to the way the regular higher-order terms of loop
integrals are treated. Note that on an absolute scale the
differences between the two schemes are comparable for
both Gp

E and Gn
E . Numerically, the results are similar to

those of ref. [18]. Due to the renormalization condition,
the contribution of the vector-meson loop diagrams either
vanishes (IR) or turns out to be small (EOMS). Thus, in
hindsight our approach puts the traditional phenomeno-
logical vector-meson dominance model on a more solid
theoretical basis. We would like to emphasize that, in the
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Fig. 2. The Sachs form factors of the nucleon in manifestly
Lorentz-invariant chiral perturbation theory atO(q4) including
vector mesons as explicit degrees of freedom. Full lines: results
in the extended on-mass-shell scheme; dashed lines: results in
infrared regularization. The experimental data are taken from
ref. [6].

sense of a strict chiral expansion in terms of small external
momenta q and quark massesmq at a fixed ratiomq/q

2 [8],
up to and including O(q4), the results with and without
explicit vector mesons are completely equivalent. The ad-
ditional vector-meson contributions up to this order are
compensated by a readjustment of the low-energy con-
stants pertaining to the theory including vector mesons as
dynamical degrees of freedom. On the other hand, the in-
clusion of vector-meson degrees of freedom in the present
framework results in a reordering of terms which, in an
ordinary chiral expansion, would show up at higher or-
ders q5 and q6 etc. It is these terms which change the
form factor results favorably for larger values of Q2. It
should be noted, however, that this re-organization pro-
ceeds according to well-defined rules so that a controlled,
order-by-order, calculation of corrections is made possible.
In contrast to the calculation without vector mesons, the
Sachs form factors Gp

E , G
p
M , and Gn

M now show sufficient
curvature to generate a more accurate phenomenology for
values of Q2, where the ordinary chiral expansion to the
same order is no longer reliable. Also the description of
Gn
E has improved considerably when compared to a cal-

culation without the inclusion of vector mesons.
To conclude, we have shown how the traditional, but

ad hoc and phenomenological vector-meson dominance

Fig. 3. The Sachs form factors of the nucleon in manifestly
Lorentz-invariant chiral perturbation theory at O(q4) without
vector mesons. Full lines: results in the extended on-mass-shell
scheme; dashed lines: results in infrared regularization. The
experimental data are taken from ref. [6].

model can be incorporated consistently into an effective
field theory approach. Using a suitable renormalization
condition we were able to set up a systematic power count-
ing and to justify that the vector-meson loop contributions
are suppressed while the tree-level pole diagrams gener-
ate the well-known important contributions to the nucleon
electromagnetic form factors.
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